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1. (2018 WT2 Final Exam) For each example below, determine whether R is a
function from A to B.
• A = R, B = Z, R = {(x, y) ∈ R× Z : x = 3y + 1}
It is not a function, for example when x =

√
2 there is no associated integer

y such that x = 3y + 1.
• A = Q≥0, B = R, R = {(x, y) ∈ Q≥0 × R : x2 = y}
It is a function, because for every positive rational number x, the number x2

is a real number.

2. (2018 WT2 Final) Consider the relation on Q de�ned by aRb ⇐⇒ a− b ∈ Z.
(a) Prove that R is an equivalence relation.

• For every a, a− a = 0 ∈ Z.
• For every a, b such that a − b ∈ Z, we have b − a = −(a − b) and so
b− a ∈ Z.
• For every a, b, c such that a − b ∈ Z and b − c ∈ Z, we have a − c =
(a− b) + (b− c) and so a− c ∈ Z.

(b) Prove that the following statement is false:

∀a, b ∈ Q, (aRb =⇒ (∀q ∈ Q, (qa)R(qb))).
We must show that there exist a, b such that a− b ∈ Z and ∃q ∈ Q, qa−qb /∈
Z. Take a = 1, b = 0, and q = 1/2.

(c) Prove if a, b ∈ Q satisfy the property that ∀q ∈ Q, (qa)R(qb), then a = b.
We prove the contrapositive, namely if a 6= b then there exists q ∈ Q such
that qa − qb /∈ Z. If a 6= b, then a − b is a nonzero rational number. Write
x = a− b. Then if we let q = 1

2x
, we have that qa− qb = 1

2
/∈ Z.

3. Let A,B be nonempty sets. Prove that if |A| ≤ |B| then |P(A)| ≤ |P(B)|.
If |A| ≤ |B|, then there is an injective function f : A → B. De�ne a function

F : P(A)→ P(B) by, for every S ⊆ A, F (S) := f(S) ⊆ B.
I claim that F is injective. Suppose that S1, S2 are two distinct subsets of A.

Then there is some element x ∈ A which is in one and not the other. WLOG,
x ∈ S1 and x /∈ S2. Then f(x) ∈ f(S1). For every y ∈ S2, we have x 6= y =⇒
f(x) 6= f(y), and thus it follows that f(x) /∈ f(S2). Thus, f(S1) 6= f(S2). This
proves that F is injective, and thus |P(A)| ≤ |P(B)|.

4. Let a, b ∈ Z be integers such that a2− 3ab+ b2 = 0. Prove that a = b = 0. (Hint:
Try mod 3.)
Suppose for a contradiction that at least one of a, b is nonzero. Then they have

a greatest common divisor d, and write a = dx, b = dy. Then a2 − 3ab + b2 =
d2(x2− 3xy+ y2). Therefore, x2− 3xy+ y2 = 0, and gcd(x, y) = 1. Now observe
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that
x2 − 3xy + y2 ≡ x2 + y2 (mod 3)

and thus, x2 + y2 ≡ 0 (mod 3). However, observe that for any integer n ∈ Z,
n ≡ 0 (mod 3) =⇒ n2 ≡ 0 (mod 3)

n ≡ 1 (mod 3) =⇒ n2 ≡ 1 (mod 3)

n ≡ 2 (mod 3) =⇒ n2 ≡ 1 (mod 3)

It thus follows that x ≡ y ≡ 0 (mod 3). But this is impossible, because gcd(x, y) =
1! We have thus reached a contradiction, and so no such integers a, b exist.

5. In this question, you will construct an explicit bijection to prove that the sets

P(N) = {S : S ⊆ N} and (0, 1] = {x ∈ R : 0 < x ≤ 1}
have the same cardinality. You can prove each step separately, so you may work
on later parts �rst if you prefer.

(a) Let F ⊂ P(N) denote the set of �nite subsets of N. That is,
F = {S ⊂ N : S is �nite}.

Prove that F is countable.

For each n ≥ 0, let Fn = {S ⊂ N : |S| = n}. It is obvious that F0 =
{∅} is countable. For every natural number m ≥ n, let Fn(m) = {S ⊂
{1, 2, . . . ,m} : |S| = n}. The set Fn can be written as a denumerable

union of �nite sets Fn =
∞⋃

m=n

Fn(m) and therefore, Fn is countable for every

n ≥ 1. A denumerable union of countable sets is countable (because N× N
is countable), and therefore because F =

∞⋃
n=0

, it follows that F is countable.

(b) Let I = P(N)−F be the complement of F . Use the previous part to prove
that I and P(N) have the same cardinality.

It is obvious that I is in�nite (I'll leave it to you to prove that if you wish).
Let S ⊆ I be any denumerable subset of I. Then there is a bijection
from S to S ∪ F , because F is countable. Thus, there is a bijection from
I = (I − S) ∪ S to P(N) = (I − S) ∪ S ∪ F .

(c) Let x ∈ (0, 1]. De�ne a sequence of positive integers a1 < a2 < a3 < . . . as
follows. For every n ∈ N, an is the smallest positive integer such that

1

2an
< x− 1

2a1
− 1

2a2
− · · · − 1

2an−1
.

Prove that this construction is well-de�ned. That is, prove that for every
n, there will always be such a positive integer an, and also prove that a1 <
a2 < a3 < . . .. Conclude that the above procedure de�nes a function

f : (0, 1]→ I, f(x) = {a1, a2, a3, . . .}.
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We must show by induction on n that if the above procedure has produced
positive integers a1 < a2 < · · · < an−1, then the de�nition will give a positive
integer an such that an−1 < an.
Consider the base case n = 1. If x ∈ (0, 1], then there is at least one positive
integer a such that 2ax > 1. It then follows that 1

2a
< x. The set of positive

integers a satisfying this property is nonempty, so by WOP, there is a unique
minimal such positive integer, which is a1.
Now we prove the inductive step. Suppose that we have our positive integers
a1 < a2 < · · · < an−1. By the de�nition of an−1, we have

0 < x− 1

2a1
− 1

2a2
− · · · − 1

2an−1

and therefore by the same reasoning as the base case, there is a unique
minimal positive integer an such that

1

2an
< x− 1

2a1
− 1

2a2
− · · · − 1

2an−1
.

All that remains is to prove that an > an−1. Suppose for a contradiction
that an ≤ an−1. Then

x− 1

2a1
− 1

2a2
− · · · − 1

2an−2
>

1

2an−1
+

1

2an

≥ 1

2an−1
+

1

2an−1

=
1

2an−1−1

But this contradicts the minimality of an−1! Therefore, we must have an >
an−1, as desired.

(d) Prove that if f(x) = {a1, a2, a3, . . .} with a1 < a2 < a3 < . . ., then

x =
1

2a1
+

1

2a2
+

1

2a3
+ . . . .

Deduce that f is injective.

First, observe that by the minimality of an, we have x−
n∑

i=1

1
2an

< 1
2an

. Also

observe that since 1 ≤ a1 < a2 < · · · < an, we have that n ≥ an for every n.
Thus, it follows that

x−
n∑

i=1

1

2an
<

1

2n
.

We need to prove that for each ε > 0, there exists some positive integer N

such that if n > N , then x −
n∑

i=1

1
2an

< ε. Let us pick N to be any positive
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integer such that 1
2N

< ε. Then if n > N , we have

x−
n∑

i=1

1

2ai
<

1

2n
<

1

2N
< ε.

as desired.
Injective: Suppose that x, y ∈ (0, 1] and

f(x) = f(y) = {a1, a2, a3, . . .}, a1 < a2 < a3 < · · · .
Then by the previous part, we have

x =
1

2a1
+

1

2a2
+

1

2a3
+ . . . = y.

so x = y.

(e) Prove that if x ∈ (0, 1] and x = 1
2a1

+ 1
2a2

+ 1
2a3

+ . . . for some positive integers
a1 < a2 < a3 < · · · , then f(x) = {a1, a2, a3, . . .}. Deduce that f is surjective.

Suppose that f(x) = {b1, b2, b3, . . .} for positive integers b1 < b2 < b3 < · · · .
We will show by induction on n that bn = an. The following argument to
prove the inductive step works for the base case n = 1. Suppose that bi = ai
for i = 1, 2, . . . , n− 1. We have that

x−
n−1∑
i=1

1

2ai
=

1

2an
+

1

2an+1
+

1

2an+2
+ · · · > 1

2an

We also have

x−
n−1∑
i=1

1

2ai
=

1

2an
+

1

2an+1
+

1

2an+2
+ ≤ 1

2an
+

1

2an · 2
+

1

2an · 4
+ . . . =

1

2an−1

Therefore, an is the minimal positive integer such that x−
n−1∑
i=1

1
2ai

> 1
2an

and

so bn = an, as desired.
Surjective: Let {a1, a2, a3, . . .} be any in�nite subset of N written so that a1 <

a2 < a3 < · · · . Then take x =
∞∑
i=1

1
2ai

. We then have f(x) = {a1, a2, a3, . . .}.


