MATH 220.204, MARCH 292019

1. (2018 WT2 Final Exam) For each example below, determine whether \mathcal{R} is a function from A to B.

- $A=\mathbb{R}, B=\mathbb{Z}, \mathcal{R}=\{(x, y) \in \mathbb{R} \times \mathbb{Z}: x=3 y+1\}$

It is not a function, for example when $x=\sqrt{2}$ there is no associated integer y such that $x=3 y+1$.

- $A=\mathbb{Q} \geq 0, B=\mathbb{R}, \mathcal{R}=\left\{(x, y) \in \mathbb{Q}_{\geq 0} \times \mathbb{R}: x^{2}=y\right\}$

It is a function, because for every positive rational number x, the number x^{2} is a real number.
2. (2018 WT2 Final) Consider the relation on \mathbb{Q} defined by $a \mathcal{R} b \Longleftrightarrow a-b \in \mathbb{Z}$.
(a) Prove that \mathcal{R} is an equivalence relation.

- For every $a, a-a=0 \in \mathbb{Z}$.
- For every a, b such that $a-b \in \mathbb{Z}$, we have $b-a=-(a-b)$ and so $b-a \in \mathbb{Z}$.
- For every a, b, c such that $a-b \in \mathbb{Z}$ and $b-c \in \mathbb{Z}$, we have $a-c=$ $(a-b)+(b-c)$ and so $a-c \in \mathbb{Z}$.
(b) Prove that the following statement is false:

$$
\forall a, b \in \mathbb{Q},(a \mathcal{R} b \Longrightarrow(\forall q \in \mathbb{Q},(q a) \mathcal{R}(q b)))
$$

We must show that there exist a, b such that $a-b \in \mathbb{Z}$ and $\exists q \in \mathbb{Q}, q a-q b \notin$ \mathbb{Z}. Take $a=1, b=0$, and $q=1 / 2$.
(c) Prove if $a, b \in \mathbb{Q}$ satisfy the property that $\forall q \in \mathbb{Q},(q a) \mathcal{R}(q b)$, then $a=b$.

We prove the contrapositive, namely if $a \neq b$ then there exists $q \in \mathbb{Q}$ such that $q a-q b \notin \mathbb{Z}$. If $a \neq b$, then $a-b$ is a nonzero rational number. Write $x=a-b$. Then if we let $q=\frac{1}{2 x}$, we have that $q a-q b=\frac{1}{2} \notin \mathbb{Z}$.
3. Let A, B be nonempty sets. Prove that if $|A| \leq|B|$ then $|\mathcal{P}(A)| \leq|\mathcal{P}(B)|$.

If $|A| \leq|B|$, then there is an injective function $f: A \rightarrow B$. Define a function $F: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ by, for every $S \subseteq A, F(S):=f(S) \subseteq B$.

I claim that F is injective. Suppose that S_{1}, S_{2} are two distinct subsets of A. Then there is some element $x \in A$ which is in one and not the other. WLOG, $x \in S_{1}$ and $x \notin S_{2}$. Then $f(x) \in f\left(S_{1}\right)$. For every $y \in S_{2}$, we have $x \neq y \Longrightarrow$ $f(x) \neq f(y)$, and thus it follows that $f(x) \notin f\left(S_{2}\right)$. Thus, $f\left(S_{1}\right) \neq f\left(S_{2}\right)$. This proves that F is injective, and thus $|\mathcal{P}(A)| \leq|\mathcal{P}(B)|$.
4. Let $a, b \in \mathbb{Z}$ be integers such that $a^{2}-3 a b+b^{2}=0$. Prove that $a=b=0$. (Hint: Try mod 3.)

Suppose for a contradiction that at least one of a, b is nonzero. Then they have a greatest common divisor d, and write $a=d x, b=d y$. Then $a^{2}-3 a b+b^{2}=$ $d^{2}\left(x^{2}-3 x y+y^{2}\right)$. Therefore, $x^{2}-3 x y+y^{2}=0$, and $\operatorname{gcd}(x, y)=1$. Now observe
that

$$
x^{2}-3 x y+y^{2} \equiv x^{2}+y^{2} \quad(\bmod 3)
$$

and thus, $x^{2}+y^{2} \equiv 0(\bmod 3)$. However, observe that for any integer $n \in \mathbb{Z}$,

$$
\begin{array}{ll}
n \equiv 0 & (\bmod 3) \Longrightarrow n^{2} \equiv 0 \\
n \equiv 1 & (\bmod 3) \\
n \equiv 2 & (\bmod 3) \Longrightarrow n^{2} \equiv 1 \\
n \equiv n^{2} \equiv 1 & (\bmod 3) \\
n & (\bmod 3)
\end{array}
$$

It thus follows that $x \equiv y \equiv 0(\bmod 3)$. But this is impossible, because $\operatorname{gcd}(x, y)=$ 1 ! We have thus reached a contradiction, and so no such integers a, b exist.
5. In this question, you will construct an explicit bijection to prove that the sets

$$
\mathcal{P}(\mathbb{N})=\{S: S \subseteq \mathbb{N}\} \quad \text { and } \quad(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}
$$

have the same cardinality. You can prove each step separately, so you may work on later parts first if you prefer.
(a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ denote the set of finite subsets of \mathbb{N}. That is,

$$
\mathcal{F}=\{S \subset \mathbb{N}: S \text { is finite }\}
$$

Prove that \mathcal{F} is countable.
For each $n \geq 0$, let $\mathcal{F}_{n}=\{S \subset \mathbb{N}:|S|=n\}$. It is obvious that $\mathcal{F}_{0}=$ $\{\emptyset\}$ is countable. For every natural number $m \geq n$, let $\mathcal{F}_{n}(m)=\{S \subset$ $\{1,2, \ldots, m\}:|S|=n\}$. The set \mathcal{F}_{n} can be written as a denumerable union of finite sets $\mathcal{F}_{n}=\bigcup_{m=n}^{\infty} \mathcal{F}_{n}(m)$ and therefore, \mathcal{F}_{n} is countable for every $n \geq 1$. A denumerable union of countable sets is countable (because $\mathbb{N} \times \mathbb{N}$ is countable), and therefore because $\mathcal{F}=\bigcup_{n=0}^{\infty}$, it follows that \mathcal{F} is countable.
(b) Let $\mathcal{I}=\mathcal{P}(\mathbb{N})-\mathcal{F}$ be the complement of \mathcal{F}. Use the previous part to prove that \mathcal{I} and $\mathcal{P}(\mathbb{N})$ have the same cardinality.

It is obvious that \mathcal{I} is infinite ($I^{\prime} l l$ leave it to you to prove that if you wish). Let $S \subseteq \mathcal{I}$ be any denumerable subset of \mathcal{I}. Then there is a bijection from S to $S \cup \mathcal{F}$, because \mathcal{F} is countable. Thus, there is a bijection from $\mathcal{I}=(\mathcal{I}-S) \cup S$ to $\mathcal{P}(\mathbb{N})=(\mathcal{I}-S) \cup S \cup \mathcal{F}$.
(c) Let $x \in(0,1]$. Define a sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ as follows. For every $n \in \mathbb{N}, a_{n}$ is the smallest positive integer such that

$$
\frac{1}{2^{a_{n}}}<x-\frac{1}{2^{a_{1}}}-\frac{1}{2^{a_{2}}}-\cdots-\frac{1}{2^{a_{n-1}}} .
$$

Prove that this construction is well-defined. That is, prove that for every n, there will always be such a positive integer a_{n}, and also prove that $a_{1}<$ $a_{2}<a_{3}<\ldots$. Conclude that the above procedure defines a function

$$
f:(0,1] \rightarrow \mathcal{I}, \quad f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} .
$$

We must show by induction on n that if the above procedure has produced positive integers $a_{1}<a_{2}<\cdots<a_{n-1}$, then the definition will give a positive integer a_{n} such that $a_{n-1}<a_{n}$.
Consider the base case $n=1$. If $x \in(0,1]$, then there is at least one positive integer a such that $2^{a} x>1$. It then follows that $\frac{1}{2^{a}}<x$. The set of positive integers a satisfying this property is nonempty, so by WOP, there is a unique minimal such positive integer, which is a_{1}.
Now we prove the inductive step. Suppose that we have our positive integers $a_{1}<a_{2}<\cdots<a_{n-1}$. By the definition of a_{n-1}, we have

$$
0<x-\frac{1}{2^{a_{1}}}-\frac{1}{2^{a_{2}}}-\cdots-\frac{1}{2^{a_{n-1}}}
$$

and therefore by the same reasoning as the base case, there is a unique minimal positive integer a_{n} such that

$$
\frac{1}{2^{a_{n}}}<x-\frac{1}{2^{a_{1}}}-\frac{1}{2^{a_{2}}}-\cdots-\frac{1}{2^{a_{n-1}}} .
$$

All that remains is to prove that $a_{n}>a_{n-1}$. Suppose for a contradiction that $a_{n} \leq a_{n-1}$. Then

$$
\begin{aligned}
x-\frac{1}{2^{a_{1}}}-\frac{1}{2^{a_{2}}}-\cdots-\frac{1}{2^{a_{n-2}}} & >\frac{1}{2^{a_{n-1}}}+\frac{1}{2^{a_{n}}} \\
& \geq \frac{1}{2^{a_{n-1}}}+\frac{1}{2^{a_{n-1}}} \\
& =\frac{1}{2^{a_{n-1}-1}}
\end{aligned}
$$

But this contradicts the minimality of a_{n-1} ! Therefore, we must have $a_{n}>$ a_{n-1}, as desired.
(d) Prove that if $f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ with $a_{1}<a_{2}<a_{3}<\ldots$, then

$$
x=\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\frac{1}{2^{a_{3}}}+\ldots
$$

Deduce that f is injective.
First, observe that by the minimality of a_{n}, we have $x-\sum_{i=1}^{n} \frac{1}{2^{a_{n}}}<\frac{1}{2^{a_{n}}}$. Also observe that since $1 \leq a_{1}<a_{2}<\cdots<a_{n}$, we have that $n \geq a_{n}$ for every n. Thus, it follows that

$$
x-\sum_{i=1}^{n} \frac{1}{2^{a_{n}}}<\frac{1}{2^{n}} .
$$

We need to prove that for each $\epsilon>0$, there exists some positive integer N such that if $n>N$, then $x-\sum_{i=1}^{n} \frac{1}{2^{a_{n}}}<\epsilon$. Let us pick N to be any positive
integer such that $\frac{1}{2^{N}}<\epsilon$. Then if $n>N$, we have

$$
x-\sum_{i=1}^{n} \frac{1}{2^{a_{i}}}<\frac{1}{2^{n}}<\frac{1}{2^{N}}<\epsilon .
$$

as desired.
Injective: Suppose that $x, y \in(0,1]$ and

$$
f(x)=f(y)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}, \quad a_{1}<a_{2}<a_{3}<\cdots .
$$

Then by the previous part, we have

$$
x=\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\frac{1}{2^{a_{3}}}+\ldots=y .
$$

so $x=y$.
(e) Prove that if $x \in(0,1]$ and $x=\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\frac{1}{2^{a_{3}}}+\ldots$ for some positive integers $a_{1}<a_{2}<a_{3}<\cdots$, then $f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Deduce that f is surjective.

Suppose that $f(x)=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$ for positive integers $b_{1}<b_{2}<b_{3}<\cdots$. We will show by induction on n that $b_{n}=a_{n}$. The following argument to prove the inductive step works for the base case $n=1$. Suppose that $b_{i}=a_{i}$ for $i=1,2, \ldots, n-1$. We have that

$$
x-\sum_{i=1}^{n-1} \frac{1}{2^{a_{i}}}=\frac{1}{2^{a_{n}}}+\frac{1}{2^{a_{n+1}}}+\frac{1}{2^{a_{n+2}}}+\cdots>\frac{1}{2^{a_{n}}}
$$

We also have
$x-\sum_{i=1}^{n-1} \frac{1}{2^{a_{i}}}=\frac{1}{2^{a_{n}}}+\frac{1}{2^{a_{n+1}}}+\frac{1}{2^{a_{n+2}}}+\leq \frac{1}{2^{a_{n}}}+\frac{1}{2^{a_{n}} \cdot 2}+\frac{1}{2^{a_{n}} \cdot 4}+\ldots=\frac{1}{2^{a_{n}-1}}$
Therefore, a_{n} is the minimal positive integer such that $x-\sum_{i=1}^{n-1} \frac{1}{2^{a_{i}}}>\frac{1}{2^{a_{n}}}$ and so $b_{n}=a_{n}$, as desired.
Surjective: Let $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ be any infinite subset of \mathbb{N} written so that $a_{1}<$ $a_{2}<a_{3}<\cdots$. Then take $x=\sum_{i=1}^{\infty} \frac{1}{2^{a_{i}}}$. We then have $f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$.

