MATH 220.204, MARCH 29 2019

- 1. (2018 WT2 Final Exam) For each example below, determine whether \mathcal{R} is a function from A to B.
 - $A = \mathbb{R}, B = \mathbb{Z}, \mathcal{R} = \{(x, y) \in \mathbb{R} \times \mathbb{Z} : x = 3y + 1\}$ It is not a function, for example when $x = \sqrt{2}$ there is no associated integer y such that x = 3y + 1.
 - A = Q_{≥0}, B = ℝ, R = {(x, y) ∈ Q_{≥0} × ℝ : x² = y} It is a function, because for every positive rational number x, the number x² is a real number.
- 2. (2018 WT2 Final) Consider the relation on \mathbb{Q} defined by $a\mathcal{R}b \iff a-b \in \mathbb{Z}$. (a) Prove that \mathcal{R} is an equivalence relation.
 - For every $a, a a = 0 \in \mathbb{Z}$.
 - For every a, b such that $a b \in \mathbb{Z}$, we have b a = -(a b) and so $b a \in \mathbb{Z}$.
 - For every a, b, c such that $a b \in \mathbb{Z}$ and $b c \in \mathbb{Z}$, we have a c = (a b) + (b c) and so $a c \in \mathbb{Z}$.
 - (b) Prove that the following statement is false:

$$\forall a, b \in \mathbb{Q}, (a\mathcal{R}b \implies (\forall q \in \mathbb{Q}, (qa)\mathcal{R}(qb))).$$

We must show that there exist a, b such that $a - b \in \mathbb{Z}$ and $\exists q \in \mathbb{Q}, qa - qb \notin \mathbb{Z}$. \mathbb{Z} . Take a = 1, b = 0, and q = 1/2.

- (c) Prove if $a, b \in \mathbb{Q}$ satisfy the property that $\forall q \in \mathbb{Q}, (qa)\mathcal{R}(qb)$, then a = b. We prove the contrapositive, namely if $a \neq b$ then there exists $q \in \mathbb{Q}$ such that $qa - qb \notin \mathbb{Z}$. If $a \neq b$, then a - b is a nonzero rational number. Write x = a - b. Then if we let $q = \frac{1}{2x}$, we have that $qa - qb = \frac{1}{2} \notin \mathbb{Z}$.
- 3. Let A, B be nonempty sets. Prove that if $|A| \leq |B|$ then $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$.
 - If $|A| \leq |B|$, then there is an injective function $f : A \to B$. Define a function $F : \mathcal{P}(A) \to \mathcal{P}(B)$ by, for every $S \subseteq A$, $F(S) := f(S) \subseteq B$.

I claim that F is injective. Suppose that S_1, S_2 are two distinct subsets of A. Then there is some element $x \in A$ which is in one and not the other. WLOG, $x \in S_1$ and $x \notin S_2$. Then $f(x) \in f(S_1)$. For every $y \in S_2$, we have $x \neq y \implies$ $f(x) \neq f(y)$, and thus it follows that $f(x) \notin f(S_2)$. Thus, $f(S_1) \neq f(S_2)$. This proves that F is injective, and thus $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$.

4. Let $a, b \in \mathbb{Z}$ be integers such that $a^2 - 3ab + b^2 = 0$. Prove that a = b = 0. (Hint: Try mod 3.)

Suppose for a contradiction that at least one of a, b is nonzero. Then they have a greatest common divisor d, and write a = dx, b = dy. Then $a^2 - 3ab + b^2 = d^2(x^2 - 3xy + y^2)$. Therefore, $x^2 - 3xy + y^2 = 0$, and gcd(x, y) = 1. Now observe that

$$x^2 - 3xy + y^2 \equiv x^2 + y^2 \pmod{3}$$

and thus, $x^2 + y^2 \equiv 0 \pmod{3}$. However, observe that for any integer $n \in \mathbb{Z}$,

$$n \equiv 0 \pmod{3} \implies n^2 \equiv 0 \pmod{3}$$
$$n \equiv 1 \pmod{3} \implies n^2 \equiv 1 \pmod{3}$$
$$n \equiv 2 \pmod{3} \implies n^2 \equiv 1 \pmod{3}$$

It thus follows that $x \equiv y \equiv 0 \pmod{3}$. But this is impossible, because gcd(x, y) = 1! We have thus reached a contradiction, and so no such integers a, b exist.

5. In this question, you will construct an explicit bijection to prove that the sets

$$\mathcal{P}(\mathbb{N}) = \{ S : S \subseteq \mathbb{N} \} \quad \text{and} \quad (0, 1] = \{ x \in \mathbb{R} : 0 < x \le 1 \}$$

have the same cardinality. You can prove each step separately, so you may work on later parts first if you prefer.

(a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ denote the set of *finite* subsets of N. That is,

 $\mathcal{F} = \{ S \subset \mathbb{N} : S \text{ is finite} \}.$

Prove that \mathcal{F} is countable.

For each $n \ge 0$, let $\mathcal{F}_n = \{S \subset \mathbb{N} : |S| = n\}$. It is obvious that $\mathcal{F}_0 = \{\emptyset\}$ is countable. For every natural number $m \ge n$, let $\mathcal{F}_n(m) = \{S \subset \{1, 2, \ldots, m\} : |S| = n\}$. The set \mathcal{F}_n can be written as a denumerable union of finite sets $\mathcal{F}_n = \bigcup_{m=n}^{\infty} \mathcal{F}_n(m)$ and therefore, \mathcal{F}_n is countable for every $n \ge 1$. A denumerable union of countable sets is countable (because $\mathbb{N} \times \mathbb{N}$ is countable), and therefore because $\mathcal{F} = \bigcup_{n=0}^{\infty}$, it follows that \mathcal{F} is countable.

(b) Let $\mathcal{I} = \mathcal{P}(\mathbb{N}) - \mathcal{F}$ be the complement of \mathcal{F} . Use the previous part to prove that \mathcal{I} and $\mathcal{P}(\mathbb{N})$ have the same cardinality.

It is obvious that \mathcal{I} is infinite (I'll leave it to you to prove that if you wish). Let $S \subseteq \mathcal{I}$ be any denumerable subset of \mathcal{I} . Then there is a bijection from S to $S \cup \mathcal{F}$, because \mathcal{F} is countable. Thus, there is a bijection from $\mathcal{I} = (\mathcal{I} - S) \cup S$ to $\mathcal{P}(\mathbb{N}) = (\mathcal{I} - S) \cup S \cup \mathcal{F}$.

(c) Let $x \in (0, 1]$. Define a sequence of positive integers $a_1 < a_2 < a_3 < \ldots$ as follows. For every $n \in \mathbb{N}$, a_n is the smallest positive integer such that

$$\frac{1}{2^{a_n}} < x - \frac{1}{2^{a_1}} - \frac{1}{2^{a_2}} - \dots - \frac{1}{2^{a_{n-1}}}.$$

Prove that this construction is well-defined. That is, prove that for every n, there will always be such a positive integer a_n , and also prove that $a_1 < a_2 < a_3 < \ldots$ Conclude that the above procedure defines a function

$$f: (0,1] \to \mathcal{I}, \quad f(x) = \{a_1, a_2, a_3, \ldots\}.$$

We must show by induction on n that if the above procedure has produced positive integers $a_1 < a_2 < \cdots < a_{n-1}$, then the definition will give a positive integer a_n such that $a_{n-1} < a_n$.

Consider the base case n = 1. If $x \in (0, 1]$, then there is at least one positive integer a such that $2^a x > 1$. It then follows that $\frac{1}{2^a} < x$. The set of positive integers a satisfying this property is nonempty, so by WOP, there is a unique minimal such positive integer, which is a_1 .

Now we prove the inductive step. Suppose that we have our positive integers $a_1 < a_2 < \cdots < a_{n-1}$. By the definition of a_{n-1} , we have

$$0 < x - \frac{1}{2^{a_1}} - \frac{1}{2^{a_2}} - \dots - \frac{1}{2^{a_{n-1}}}$$

and therefore by the same reasoning as the base case, there is a unique minimal positive integer a_n such that

$$\frac{1}{2^{a_n}} < x - \frac{1}{2^{a_1}} - \frac{1}{2^{a_2}} - \dots - \frac{1}{2^{a_{n-1}}}.$$

All that remains is to prove that $a_n > a_{n-1}$. Suppose for a contradiction that $a_n \leq a_{n-1}$. Then

$$x - \frac{1}{2^{a_1}} - \frac{1}{2^{a_2}} - \dots - \frac{1}{2^{a_{n-2}}} > \frac{1}{2^{a_{n-1}}} + \frac{1}{2^{a_n}}$$
$$\geq \frac{1}{2^{a_{n-1}}} + \frac{1}{2^{a_{n-1}}}$$
$$= \frac{1}{2^{a_{n-1}-1}}$$

But this contradicts the minimality of a_{n-1} ! Therefore, we must have $a_n > a_{n-1}$, as desired.

(d) Prove that if $f(x) = \{a_1, a_2, a_3, \ldots\}$ with $a_1 < a_2 < a_3 < \ldots$, then

$$x = \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \frac{1}{2^{a_3}} + \dots$$

Deduce that f is injective.

First, observe that by the minimality of a_n , we have $x - \sum_{i=1}^n \frac{1}{2^{a_n}} < \frac{1}{2^{a_n}}$. Also observe that since $1 \le a_1 < a_2 < \cdots < a_n$, we have that $n \ge a_n$ for every n. Thus, it follows that

$$x - \sum_{i=1}^{n} \frac{1}{2^{a_n}} < \frac{1}{2^n}.$$

We need to prove that for each $\epsilon > 0$, there exists some positive integer N such that if n > N, then $x - \sum_{i=1}^{n} \frac{1}{2^{a_n}} < \epsilon$. Let us pick N to be any positive

integer such that $\frac{1}{2^N} < \epsilon$. Then if n > N, we have

$$x - \sum_{i=1}^{n} \frac{1}{2^{a_i}} < \frac{1}{2^n} < \frac{1}{2^N} < \epsilon.$$

as desired.

Injective: Suppose that $x, y \in (0, 1]$ and

$$f(x) = f(y) = \{a_1, a_2, a_3, \ldots\}, \quad a_1 < a_2 < a_3 < \cdots$$

Then by the previous part, we have

$$x = \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \frac{1}{2^{a_3}} + \ldots = y.$$

so x = y.

(e) Prove that if $x \in (0, 1]$ and $x = \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \frac{1}{2^{a_3}} + \dots$ for some positive integers $a_1 < a_2 < a_3 < \cdots$, then $f(x) = \{a_1, a_2, a_3, \dots\}$. Deduce that f is surjective.

Suppose that $f(x) = \{b_1, b_2, b_3, \ldots\}$ for positive integers $b_1 < b_2 < b_3 < \cdots$. We will show by induction on n that $b_n = a_n$. The following argument to prove the inductive step works for the base case n = 1. Suppose that $b_i = a_i$ for $i = 1, 2, \ldots, n-1$. We have that

$$x - \sum_{i=1}^{n-1} \frac{1}{2^{a_i}} = \frac{1}{2^{a_n}} + \frac{1}{2^{a_{n+1}}} + \frac{1}{2^{a_{n+2}}} + \dots > \frac{1}{2^{a_n}}$$

We also have

$$x - \sum_{i=1}^{n-1} \frac{1}{2^{a_i}} = \frac{1}{2^{a_n}} + \frac{1}{2^{a_{n+1}}} + \frac{1}{2^{a_{n+2}}} + \le \frac{1}{2^{a_n}} + \frac{1}{2^{a_n} \cdot 2} + \frac{1}{2^{a_n} \cdot 4} + \dots = \frac{1}{2^{a_n-1}}$$

Therefore, a_n is the minimal positive integer such that $x - \sum_{i=1}^{n-1} \frac{1}{2^{a_i}} > \frac{1}{2^{a_n}}$ and so $b_n = a_n$, as desired.

Surjective: Let $\{a_1, a_2, a_3, \ldots\}$ be any infinite subset of \mathbb{N} written so that $a_1 < a_2 < a_3 < \cdots$. Then take $x = \sum_{i=1}^{\infty} \frac{1}{2^{a_i}}$. We then have $f(x) = \{a_1, a_2, a_3, \ldots\}$.